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Abstract

Coastal erosion is identified as one of the most important processes affecting the Mozambican

coast. With 44% of the country’s population living in coastal areas, there is a serious need to better

understand and quantify the changes imposed by this phenomenon. Moreover, is fundamental to in-

fer about the vulnerability the coast is subject to. The main objective of this thesis is to make use of

remote sensing and GIS techniques to study the evolution and vulnerability of the Mozambican coast

throughout a period of 26 years (1989-2015), using Landsat satellite imagery. To achieve this objective

an attempt was made to estimate coastline changes in terms of erosion and/or accretion in the country,

more specifically along the Sofala Bay region, through the implementation of two different classification

methods based on support vector machines (SVMs) and modified normalized difference water index

(MNDWI), with posterior coastline extraction. Sites where changes deemed more significant were iden-

tified, change analysis was performed by the computation of erosion and accretion areas to have a better

understanding of actual area lost or gained. Vulnerability was computed by the application of the coastal

vulnerability index (CVI) in this sites. It was possible to conclude that extensive erosion and coastline

retreat are occurring in this region even though CVI calculation revealed low to moderate vulnerability,

with exception of sites located in the city of Beira, that obtained a high vulnerability value. Possible

reasons that could explain the results obtained were also analysed in the process of this study.

Keywords: Mozambique, coastal erosion, remote sensing, Landsat, support vector machines,

coastal vulnerability index.
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Resumo

A erosão costeira é um dos processos mais importantes que afecta a costa de Moçambique.

Uma vez que 44% da população vive em zonas costeiras, torna-se fundamental compreender de forma

clara e quantificar as alteraçoes impostas por este fenómeno, e ainda inferir acerca da vulnerabilidade à

qual a costa se encontra sujeita. O principal objectivo desta tese é a utilização de técnicas de detecção

remota e sistemas de informação geográfica com o intuito de estudar a evolução e vulnerabilidade

da costa Moçambicana num período de 26 anos (1989-2015), utilizando imagens de Landsat. Para

alcançar este objectivo, foram estimadas as alterações da linha de costa em termos de erosão e/ou

acreção no país, mais especificamente ao longo da Baía de Sofala. Isto foi feito através da imple-

mentação de dois métodos diferentes de classificação de imagens, SVMs e MNDWI, com posterior

delimitação e extracção da linha de costa. Locais onde as alterações se mostraram mais significati-

vas, foram identificados e a sua análise realizada através da estimativa de áreas de erosão e acreção,

de modo a ter um melhor entendimento da real área perdida ou ganha. Vulnerabilidade foi estimada

através do cálculo do índice de vulnerabilidade costeira. É possível concluir que extensa erosão e recuo

da linha de costa estão a ocorrer na região estudada, apesar de o índice de vulnerabilidade ter revelado

valores baixos a moderados, com excepção de locais situados na cidade da Beira, que obtiveram val-

ores altos de vulnerabilidade. Possíveis razões que possam explicar os resultados obtidos são também

analisadas.

Palavras-chave: Moçambique, erosão costeira, detecção remota, Landsat, SVMs, índice de

vulnerabilidade costeira.
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1 Introduction

All over the world, coastal zones are facing intensified natural and anthropogenic disturbances

such as sea-level rise, coastal erosion, over exploitation of resources, among many others. According to

Appeaning Addo et al. (2008), over 70% of the world’s beaches are experiencing coastal erosion which

represents a serious hazard to many coastal areas. Rapid coastline changes can lead to serious social

and economic consequences, specially in highly populated areas (Addo and Kodzo, 2013). These facts

have led, over the recent years, to an increase in awareness of the adverse impacts that the coastal

environments are facing, which is translated in more coastline change and vulnerability studies being

performed in several and very different regions of the world.

Coastal erosion is defined as the process of removal of material at the coastline, leading to

loss of land and retreat of the coastline landward. Accretion is defined as the deposition of material at

the coastline leading to gain in land and coastline advance seaward (Gibb, 1978; Ghosh et al., 2015).

Monitoring temporal and spatial changes of coastal environments, can help understand these processes

and predict their development (Addo and Kodzo, 2013). One way to identify changes in coastal ecosys-

tems is by mapping changes in the coastlines, which makes it possible to observe how this ecosystems

have changed over different time scales. Knowledge of coastline position is the basis for measuring and

characterising land and coastal water resources (Liu and Jezek, 2004; Petropoulos et al., 2015).

An idealized definition of coastline can be characterized as the interface between land and

water (Dolan et al., 1991; Li and Damen, 2010). However, a more realistic definition considers that the

coastline position changes through time, due to sediment movement in the littoral zone and especially

because of the dynamic nature of water levels at the coastal boundary (waves, tides, storm surge, etc.).

When studying the coastline, one should take into account the temporal and spatial scale involved (Boak

and Turner, 2005). Gens (2010) defines the coastline as the position of land-water interface at an instant

in time, and with highly dynamic nature. In the wake of this study, Gens (2010) definition of coastline will

be considered. It is also important to mention that the term ’shoreline’ is used by the coastal research

community, while the remote sensing community usually refers to ’coastline’ (Gens, 2010). In this thesis,

both terms will be considered synonyms and the term ’coastline’ will be used in the remainder of this

work.

Due to the importance of the processes that occur along the coast, rapid and reliable tech-

niques are necessary to monitor the coastline and develop viable plans to protect the coast and reduce

potential losses. Over the years, with increasing awareness to this problem, a series of techniques

based on EO data have been employed to study coastline changes all over the world. (Ghosh et al.,

2015)

Remote sensing techniques have been useful in the study of coastal processes, including ero-

sion, due to satellites rapid, repetitive and multi-spectral coverage (Tirkey et al., 2005; Vinayaraj et al.,

2011). This technology has since long been considered the most convenient way to evaluate coastline
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changes and monitor coastal processes by making use of historical data. It is specially useful when

ground data is not available (Maktav et al., 2002). One of its great advantages lies in the detection and

expansion of information over vast remote regions at relatively low cost, or in the case of Landsat data

at no cost at all and accessible to everyone (Donato and Klemas, 2001; Kuenzer et al., 2014).

In the last two decades various remote sensing techniques have become available for coastline

delineation and extraction. Coastlines can be derived based on visually discernible features, digital

image processing techniques, such as image classification methods, or specific tidal datum, through

the use of digital terrain models and a number of data sources. This depends on the type of satellite

from which the images are derived (Boak and Turner, 2005). Multispectral images provide detailed

information over large areas, which makes them a great tool to study the coast (Boak and Turner, 2005).

Moreover, this kind of imagery provides several spectral bands, including near and midle-infrared where

the land/water boundary is well defined (Addo and Kodzo, 2013; Van and Binh, 2008). The major

limitation of satellite images lies in their relatively low spatial resolution, when compared with aerial

photographs (Appeaning Addo et al., 2008).

The main objective of this thesis is to make use of remote sensing and GIS techniques to study

the evolution and vulnerability of the Mozambican coast throughout a period of 26 years, using Landsat

satellite imagery. Coastal erosion in Mozambique has been identified as one of the most important

processes affecting the coastal system, mainly due to natural processes. It is known that 44% of the

country’s population is living in coastal areas, mostly in coastal cities, and with the ever increasing trend

for urbanization and tourism infrastructures, which exerts intensified pressure on coastal environments,

it becomes so very important to perform this study specifically in this country (Palalane et al., 2015).

To evaluate coastline change over the Mozambican coast, a study area was chosen, located within the

Sofala province.

To achieve the objective proposed, coastline changes were estimated in terms of erosion and/or

accretion in the country, more specifically along the Sofala Bay area, through the implementation of two

different classification methods and posterior visual analysis. The two methods applied in order to extract

the coastline were the Modified Normalized Difference Water Index (MNDWI) and a semi-automatic

classification method based on Support Vector Machines (SVMs). After extraction and overlaying the

coastlines of every image used, areas where changes occur were quantified in terms of area lost or

gained. For these sites, a coastal vulnerability index (CVI) was developed based on three parameters

(coastline change rate, landuse and population density). The CVI was used in order to map the relative

vulnerability of these sites, characterizing the coastal processes and activities that may be affecting the

coastal areas. Landuse is classified here according to its economic value and it is not a surprise that

population density is considered when estimating vulnerability, since large concentrations of people near

the coast can lead to increased pressure along this regions and consequently intensified risk to erosion

processes (Jana and Bhattacharya, 2013; McLaughlin et al., 2002). Coastline change rate is used with

the purpose to quantify and better understand the current rate of recession/accretion of the coast. In the

2



end, for each of the sites studied, risk and vulnerability maps were computed.

This thesis is divided in 6 main parts. The first part pertains to what has been already done in

regards to remote sensing techniques throughout the world and in Mozambique for the study of coastal

erosion and coastline change analysis. The second part deals with presentation and description of

Mozambique coastal area and the specific area studied here. The third section is dedicated to the

type of data used and methodology and techniques employed to obtain the results. The fourth section

is precisely the description of the results obtained. Results are presented in a sequential manner,

both intermediary and the final ones. In the fifth part, the results are discussed based on literature

findings and own rational judgement. Finally, the sixth section is dedicated to final conclusions reached

throughout the development of this thesis. It is also presented in this section an overlook over future

work and techniques that could further deepen this study.

3



2 State of the Art

Coastal erosion is recognized as a global problem and increasing anthropogenic disturbances

such as population and industrial developments near the coast have been raising attention to this so

serious problem. (Appeaning Addo et al., 2008; Ge et al., 2013; Vinayaraj et al., 2011; Ghosh et al.,

2015)

Remote sensing and GIS techniques allow coastline monitoring in a cost effective way. This

is a good alternative to aerial photo and ground survey techniques, because conventional coastline

monitoring techniques are expensive, time consuming and require trained staff (Ghosh et al., 2015).

Various studies have been conducted employing several change detection techniques using different

spatial and temporal resolutions of satellite imagery, in order to quantify erosion and/or accretion. Only

with more accurate tools is possible to define better planning and management strategies for the coastal

zones.

Guariglia et al. (2006) used a multi source approach to map the coastline and identify changes

and observed that depending on their spatial resolution, satellite images are affected by tidal variations.

However, in their study they concluded that the coastline can be extracted from Landsat TM images

having a spatial resolution of 30 meters, without the interference of the tidal factor. However, in higher

spatial resolution images, tidal effects must be considered when identifying the coastline.

Li and Damen (2010) explored the use of multi-temporal satellite Landsat TM/ETM+ and also

SPOT images to study and map the coastline of the Pearl River Estuary in China. They tested different

band false colour combinations to delineate the coastline.

Ge et al. (2013) focused on mapping coastal erosion by integrating multi-sensor satellite images

from several years to estimate the change along the coastline of Gippsland basin in Victoria, Australia.

They used a cost effective approach for mapping the eroded coastline, integrating Landsat multi-spectral

(MS) imagery and synthetic aperture radar (SAR) imagery data, extracting the land-water interface at

sub-pixel resolution.

Processing of satellite images is often necessary in order that water and land appear as con-

trasting features. For this, water indices are usually employed, where two bands are used for their

computation, normally one from the visible portion of the spectrum and other from the near or midle-

infrared portion (Ghosh et al., 2015). In particular, Liu (2011) made use of the MNDWI to extract the

coastline using medium resolution Landsat TM and ETM+ images. By measuring the change of coast-

line along the Yellow river delta, this information was later used to calculate the coastal erosion area

and the average rate of erosion through the application of GIS tools. This modified water index is seen

as very effective in extracting the coastline since it can enhance open water features while efficiently

removing and in some cases even suppressing the built-up land noise as well as vegetation and soil

noise (Xu, 2006).
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Ghosh et al. (2015) also used the MNDWI and on-screen digitization to identify and detect

coastline changes and estimate the rate of this change on Hatiya island in Bangladesh.

An overview of the status use of EO techniques for detection, extraction and monitoring of

coastlines, and also a reference to coastline indicators can be found in Gens (2010). It refers that, even

though manual photo-interpretation has been regarded has one of the most commonly used techniques

for delineating coastline when multi-spectral data is used, in recent years new approaches have been

proposed for coastline extraction from EO data, more automated and with image classification being the

most widely used.

Using multi-temporal satellite sensor data integrated with ground data during a period of 14

years, Maktav et al. (2002) examined the erosion at the Black Sea side coast of Lake Terkos in Turkey.

They monitored the change in land barrier between the Black Sea and the Lake Terkos based on the

comparison of land cover/land use classifications of the sequential data. This was done by allocating

pixels to their most likely class based on an Iterative Self-Organizing data (ISODATA) algorithm, an

unsupervised classification method.

Petropoulos et al. (2015) used Landsat TM imagery and GIS techniques to perform a semi-

automatic classification method based on SVMs in order to map spatio-temporal changes of erosion

and deposition of two Mediterranean river deltas. Huang et al. (2008), Otukei and Blaschke (2010),

Petropoulos et al. (2012a),Petropoulos et al. (2012b) and Volpi et al. (2013), also computed this super-

vised classification method using different types of Earth Observation data, concluding that it was indeed

a very robust method for coastline delineation. Mountrakis et al. (2011) presents an overview of support

vector machines classification method.

When studying coastline change, quantifying rates of coastal retreat is also important, that

is why several authors have been employing the Digital Shoreline Analysis System (DSAS), an ESRI

Arc-GIS, extension developed by the USGS, that allows the users to calculate coastline change-rate

statistics from a time series of multiple coastline positions, in combination with remote sensing tech-

niques (Himmelstoss et al., 2009). This tool was also used in this thesis, for the calculation of coastline

change rate.

Alhin and Niemeyer (2009) used medium resolution satellite imagery, Landsat ETM, Landsat

TM-5 and SPOT 5 to monitor and analyse the coastline dynamics over two decades along Gaza coast-

line. They extracted the coastline employing four different methods, Band ratio, Tasseled Cap transfor-

mation, Principle Component Analysis (PCA) and Normalized vegetation Index (NVDI) and calculated

the rate of change along Gaza coastal zone, making use of the DSAS tool.

Also making use of higher resolution satellite imagery, like SPOT, Quickbird and WorldView,

Kuenzer et al. (2014) have employed manual digitization to extract the land-water boundary and derive

rate of change statistics automatically from the DSAS system to study the coastal dynamics of the Yellow

river Delta, China.
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Addo and Kodzo (2013) analysed coastline change using medium resolution satellite imagery

including Landsat TM, Landsat ETM+ and ASTER imagery, with implementation of the DSAS tool for

change rate estimation of the Eastern coast of Ghana.

Allied to coastline change analysis, increasing attention has been directed to the development

of vulnerability maps through the computation of the coastal vulnerability index (CVI) making use of

remote sensing and GIS techniques. There has been an increase in the past years, in the number of

vulnerability indices produced for specific coastal areas.

McLaughlin et al. (2002) investigated the incorporation of socio-economic variables (population

density, cultural heritage, roads, railways, landuse and conservation status) into a GIS based CVI for

wave induced erosion in Northern Ireland, and concluded that the inclusion of this variables is of ex-

treme importance to assess coastal vulnerability. However, most studies still omit this variables in CVI

calculation, mostly due to the difficulty of obtaining and ranking such data.

Most recently, Kumar et al. (2010) developed a CVI for the maritime state of Orissa using eight

relative risk variables with the objective to develop a tool that can be used by coastal managers in order

to better plan and mitigate losses due to hazards. The eight risk variables are, shoreline change rate,

sea level change rate, coastal slope, mean significant wave height, mean tidal range, coastal regional

elevation, coastal geomorphology and tsunami run-up.

Chandrasekar et al. (2013) mapped relative vulnerability of the Southern tip of India using

coastline change analysis, with multi-temporal Landsat data, and calculated the coastal vulnerability

index using six vulnerable parameters, shoreline change rate, coastal slope, relative sea level change,

mean wave height and mean tide range.

Jana and Bhattacharya (2013) developed a coastal vulnerability index for Digha littoral, on the

east coast of India, based on three parameters (coastline change rate, landuse cover and population

density), in order to help in the development of management policies for sensitive coastal areas.

Studies to estimate vulnerability of the coast to sea level rise, due to global warming have also

been increasing, with Mahapatra et al. (2015), Pendleton et al. (2004) and Rao et al. (2009) being among

them.

Regarding studies of coastal erosion in Mozambique making use of remote sensing techniques,

bibliographic research led to the conclusion that they are still few. Even so, some studies were found

where erosion and coastal phenomenons have been analysed.

Moreira (2005) computed erosion change rates for some areas of Mozambique, specially fo-

cused on the country’s south beaches. This study was mainly based on field work, observing the coast-

line between 1970 to 1975 and 1999 to 2004. Comparison of the results obtained was done making

use of aerial photographs. Maansson (2011) presents a value for coastal recession for Beira region,

however the period for which this was calculated and data sources used are not specified.
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Langa (2007) has also studied the problems encountered along the Mozambican coast, but

once again with some focus on the south part of the country, specially the city of Maputo.

Hoguane (2007) has performed a diagnosis of Mozambique coastal zone, where he pointed

out the urgent need to adopt sustainable measures for the use and management of resources.

Attempting to understand how the most pressured areas in Mozambique respond to natural and

anthropogenic action as well as to assess erosion rates, Palalane et al. (2015) developed a study that

contributes to an increase in knowledge about coastal erosion in the country, its governing processes

and what remedial measures are being adopted to deal with this problem. It also analyses the existing

legal framework for coastal planning and management, and evaluates historical and existing practices

in coastal protection.

Theron et al. (2012) performed a study on the response of Mozambique to climate change,

in order to develop plans for adaptation and mitigation measures to the impacts on the coast. This

study was the only one found that included coastal vulnerability analysis regarding erosion and accretion

processes, for the period between 1991 and 2004, using remote sensing techniques for the major coastal

cities of the country, including Beira, which will be analysed here.

Although Palalane et al. (2015) and Moreira (2005) also make some brief comments about

the city of Beira and the area under study here, the governing processes in this region are still very ill

explored and more insight on the actual change rate and vulnerability of this coast are needed.

Many more studies of coastal changes through out the world could have been presented here,

however, the ones mentioned were the ones cited in several other sections of this thesis, and for that

reason deemed to be of more immediate importance to be carefully described here than any others.
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3 Case Study

Mozambique is located in the south-east corner of the African continent for which holds the

title of the fourth longest coastline, with an estimated length of approximately 2800 km (MICOA, 2007).

Figure 1 shows the country’s location in southern Africa.

Figure 1: Geographical location of Mozambique in southern Africa. Image from Google Maps, 2016.

At present (2016), the country is estimated to have a population of 26.4 million inhabitants

(INE, 2016) with the last population census, undergone in the year of 2007, estimating that 44% of the

population resides in coastal districts (Palalane et al., 2015; INE, 2016). Five of the urban centres -

Maputo, Matola, Beira, Nacala and Quelimane - which are located along the coast belong to the list

of the seven most populated cities in Mozambique. The expected development in coastal areas will

contribute to an increase in the number of people moving to these areas, implying an expansion of new

urban infrastructural developments and tourist activities (Palalane et al., 2015). These factors are a

precedent to the fact that these urban and suburban areas are experiencing the most critical levels of

erosion (NAPA, 2007).

In terms of morphology, the coastal areas of Mozambique are divided in 3 regions. The north-

ern region, characterized by small dunes alternating with cliffs and attached beaches, reefs and coral

islands (Palalane et al., 2015). Due to this type of morphology this region, according to the literature,

does not suffer much from the influence of erosion processes (NAPA, 2007). The central region, mainly

represented by Sofala province, is characterized by fluvial-marine plain with sandy muddy soils and low

beach ridges, while the southern region, which encompasses the areas of Inhambane city, Maputo and
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Ponta do Ouro, is characterized for its sandy plain, system of dunes, inland lagoons, barrier islands,

such as the Bazaruto Arquipelago, and platform barriers of sandstones (Palalane et al., 2015).

The coastal zones constitute a very important area since activities such as tourism and recre-

ation, mining, oil and gas industry and also aquaculture, all occur in the coastal zone. These activities

are clearly relevant to the economy of the country and being located in such high risk areas makes

them vulnerable to a variety of disturbances that contribute significantly to erosion (NAPA, 2007). In fact,

coastal erosion has been identified as one of the most important phenomena occurring in the Mozambi-

can coastal system (Palalane et al., 2015). Coastal erosion in the country is driven by natural processes

in combination with anthropogenic actions, which have an important role in accelerating this problem. It

is estimated that 90% of erosion is caused by natural forces, and 10% by human factors (NAPA, 2007).

Even though anthropogenic actions cause changes more evident in the coastal environment, natural

processes are the main reason for the evolution of the Mozambican coast (Moreira, 2005). This con-

clusion was reached based on the observation that some stretches of the coast, not affected locally or

regionally by human activity, were experiencing accelerating rates of erosion (Palalane et al., 2015).

Tides, waves and sea level fluctuation along with extreme climate events such as tropical cy-

clones and heavy rains, that occur frequently, are responsible for significant changes of the coastline as

a consequence of their strong erosion action (NAPA, 2007; Moreira, 2005). Human action can be ob-

served in the intensive occupation of areas adjacent to the coastline, with constructions on top of dunes,

consequence of the proliferation of tourism, logging of vegetation and mangrove trees, or construction of

houses in areas previously occupied by mangroves and wetlands, destabilization of coastal sand islands

and placement and extension of coastal protection structures (Hoguane, 2007; Langa, 2007).

Regarding wave conditions, a variety of studies shows that larger significant wave heights are

seen during the winter, which occurs between April and September. (Guiloviça, 2011; Martins, 2012;

Theron et al., 2012)

Along the Mozambican coast, tides are observed to be semi diurnal with mean high water

spring level varying between 1.4 and 3.7 meters above mean sea level (Theron et al., 2012). In the

Mozambique Channel, encompassing the central region of the country, the mean spring tidal ranges

can reach values above 6 meters, representing the maximum ranges observed along the entire African

coast. As a consequence of such high tide heights, sea currents are also stronger, which leads to higher

erosion on river banks and beaches (Hoguane, 2007).

These characteristics are what transforms the coastal zones in areas of great importance sub-

ject to many forces that make them dynamic areas where significant changes in the morphology occur

over different scales in time and space (Palalane et al., 2015). This is why it becomes so important to

study them in order to have a better understanding of the actual rate of recession and the activities or

processes, either natural or anthropogenic, that contribute to this phenomenon. To do this, a specific

area within the country was selected to be analysed throughout a considered period of time, from 1989
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to 2015, making use of Landsat satellite images.

The region chosen is located within the Sofala province and between latitude 19o30 S and

21o10 S, approximately. This area is located in the central region of Mozambique and includes the city

of Beira, which is referred in the literature as a very vulnerable city to erosion (MICOA, 2007; Palalane

et al., 2015). It also includes part of the Sofala Bay extending from the Save river to the region of Tama.

Figure 2 shows the coastal area under study within the Sofala Province and a representation of the city

of Beira.

After extensive research on the vulnerability and high risk areas to erosion in the Mozambican

coast, this specific region was chosen for the analysis of coastal erosion and rate of recession as the one

which contains the areas with higher risk to erosion as it will be made clear in the following paragraphs.

Figure 2: Coastal area under study. a) Representation of Sofala Province; b) Case study area under
analysis within Sofala region; c) City of Beira. Images from Google EarthTM.

According to NAPA (2007), the centre of high vulnerability to erosion in the Mozambican coast

is around 20o latitude, which encompasses the Sofala Bay. This region is characterized by a delta and

mangrove forest in the north and high vegetated dunes in the south. The interior is known for its plain

area which is usually prone to floods during extreme climate events. There is also the fact that coastal

dunes suffer from the increased pressure of tourism development and urban expansion.

In the area between the Save and Zambezi rivers (Figure 2a), it is known that erosion has

been aggravated in the past years due to logging of the mangroves and reduction of water volumes from
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the Zambezi river after the construction of the Cahora-Bassa hydro-electric dam (NAPA, 2007). Some

authors have mentioned the link between the increased erosion along Beira and Sofala Bank coast and

the construction of the Cahora-Bassa dam (finished in 1974) as well as the Kariba dam (finished in 1969)

and the water extraction from Panque River (Davies et al., 2001; UNEP/Nairobi, 2009). The reduction

of mangrove forest that has been observed along the Sofala Bank contributes to further erosion of the

coast. This reduction has been recorded in the order of the 4.9% per year, due to destruction and

overexploitation (Sitoe et al., 2014).

The city of Beira (Figure 2b and 2c) is located in the central region of Mozambique at the mouth

of Pungué river and harbours one of the three major regional ports in the country. Several authors, such

as Moreira (2005), Palalane et al. (2015) and Theron et al. (2012), consider that Beira is located in a

very high risk region in terms of erosion.

Interference with natural sediment deposition and transport pattern is a reality in Beira Port,

situated east of the Pungué River estuary and less than 10km from Buzi river mouth. Seawalls and groins

from different materials are common structures that have been adopted in the city with the purpose

to maintain the coastline and protect coastal infrastructures. However, these infrastructures induce

changes in the dynamic of local sediments and lead to negative impacts on adjacent areas. (Hoguane,

2007)

As it is already known, high tides have also contributed to the increasing effects of erosion

along the coast and in the case of Beira coastal areas, tidal amplitudes can reach and even exceed the

6 meters (Palalane et al., 2015). According to Hoguane (2007) this value is twice as high than the tides

observed in northern and southern regions of Mozambique. It is also important to note that Beira is a

flat area prone to flooding problems. As such it is not surprising that this city is cited as the most prone

to coastal erosion of all the Mozambican cities with a high number of events reported indicating severe

erosion hazards (Chemane et al., 1997; Orive and Cancelas, 2012; Theron et al., 2012). It has also

been pointed as the most vulnerable city to sea level rise, in future climate change scenarios (Theron

et al., 2012).

Another aspect to take into account is the frequency and intensity of cyclones along the Mozam-

bican coast which have increased in the last 30 years, and future climate change scenarios suggest that

this increasing trend will persist (INGC, 2009). Figure 3 shows the cyclone hazard over the Mozambican

coast. It is possible to see that over the area of study the cyclone hazard is very high. The increas-

ing intensity of cyclones and other storm events may result in more damages and losses in areas with

infrastructures, more specifically in coastal cities where buildings are located close to the coast, like

Beira. In fact, in August 2010 a destructive cyclone hit Beira coast leading to the destruction of the road

along Ponta Gea Marginal (Palalane et al., 2015). During cyclones the sea level increase can induce

a setback of the coastline and dune region leading to losses of land and flooding in flat and low-lying

coastal plains, such as Beira (DNET, 2010).
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After analysing these facts, it is possible to infer that the region chosen to perform this study

is clearly considered a high risk area affected by direct and indirect anthropogenic pressure, such as

tourism development and the construction of damns, and naturally induced erosion. As such, coast-

line change detection and vulnerability analysis will be performed over this area and results obtained

discussed taking into account the facts presented here.

Figure 3: Cyclone vulnerability of the Mozambican coast, with case study area delimited (rectangle).
Adapted from Theron et al. (2012).
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4 Methodology

4.1 DataSets

In this study Landsat imagery from 6 different time periods, spanning approximately 26 years,

was used. Landsat is the only multi-spectral satellite data available at no cost, providing coverage of

the Earth that goes back to 1972 (Petropoulos et al., 2015). This is one of the reasons that it is so

extensively used in many studies including coastline change evaluation, as seen in one of the previous

sections.

The accuracy of coastline detection depends on the spatial resolution of the source data. With

higher resolution, it is expected higher accuracy of the extracted coastline. However, sometimes using

high resolution satellite images is not an option especially due to their cost. In these cases, medium-

resolution optical imagery can be used to determine coastline in a cost-effective way. (Gens, 2010)

For the purpose of this study five images of Landsat Thematic Mapper (TM) and one from

Landsat 8 were used (Figure 4-5).

Figure 4: Landsat TM image from 1989 at 3-2-1 (RGB) band composition (path: 167; row: 74).
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Figure 5: Landsat 8 image from 2015 at 4-3-2 (RGB) band composition (path: 167; row: 74).

The TM has seven spectral bands with a spatial resolution of 30 meters for Bands 1 to 5 and 7. Band 6,

which corresponds to the thermal infrared band, has a spatial resolution of 120 meters, but is resampled

to 30 meter pixels (Table 1). Landsat 8 images consist of nine spectral bands with a spatial resolution

of 30 meters, bands 1 to 7 and band 9. There is a new band 1, useful for coastal and aerossol studies,

and a new band 9 useful for cirrus cloud temperatures. Band 8, which corresponds to the panchromatic

band, has a resolution of 15 meters. Thermal infrared bands, TIRS 1 and 2, are acquired at 100 meter

resolution, but are resampled to 30 meter pixels (Table 2) (USGS, 2016a).

Table 1: Landsat TM Band designations.
Landsat 4 - 5 Wavelenght (µm) Resolution (meters)
Band 1 (Blue) 0.45 - 0.52 30
Band 2 (Green) 0.52 - 0.60 30
Band 3 (Red) 0.63 - 0.69 30
Band 4 (NIR) 0.76 - 0.90 30
Band 5 (SWIR) 1.55 - 1.75 30
Band 6 (TIR) 10.40 - 12.50 120*(30)
Band 7 (SWIR) 2.08 - 2.35 30
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Table 2: Landsat 8 Band designations.

Landsat 8 Wavelenght (µm) Resolution (meters)
Band 1 (Coastal aerossol) 0.43 - 0.45 30
Band 2 (Blue) 0.45 - 0.51 30
Band 3 (Green) 0.53 - 0.59 30
Band 4 (Red) 0.64 - 0.67 30
Band 5 (NIR) 0.85 - 0.88 30
Band 6 (SWIR 1) 1.57 - 1.65 30
Band 7 (SWIR 2) 2.11 - 2.29 30
Band 8 (Panchromatic) 0.50 - 0.68 15
Band 9 (Cirrus) 1.36 - 1.38 30
Band 10 (TIR 1) 10.60 - 11.19 100*(30)
Band 11 (TIR 2) 11.50 - 12.51 100*(30)

For the purpose of this study, thermal bands, band 6 in TM and band 10 and 11 in Landsat 8,

were not used for analysis of the coastline.

All images were obtained and downloaded from the United States Geological Survey (USGS)

archive, (http://earthexplorer.usgs.gov/). The images were acquired at Level-1T processing which

means they were already geometrically corrected, resampled and registered to a UTM 36 WGS84 el-

lipsoid with elevation correlation applied (USGS, 2016b). As reported by NASA, this product is geo-

referenced with a level of precision better than 0.44 pixels (meaning 13.4 m) (Petropoulos et al., 2015;

Pardo-Pascual et al., 2012).

The characteristics of the images acquired can be found in the table 3.

Table 3: Landsat data used in this study and respective characteristics.

Satellite/Data Path/Row Date Local Hour Resolution Level Cloud Cover (%)
Landsat 5 TM 167/74 19/09/1989 07:07 30m L1T 0
Landsat 5 TM 167/74 31/05/1995 06:48 30m L1T 0.06
Landsat 5 TM 167/74 30/08/1999 07:19 30m L1T 0
Landsat 5 TM 167/74 24/06/2004 07:23 30m L1T 0
Landsat 5 TM 167/74 20/08/2007 07:35 30m L1T 0.03
Landsat 8 167/74 06/05/2015 07:41 30m L1T 0.02*

*This cloud cover value corresponds to the cloud cover on Land.

One can observe from this table that no images between 2007 and 2015 were used in this

study. This was due to the fact that there were less images in this time period, and a lot of them had a

considerable amount of clouds near the coast. Also, the fact that after 2003 all ETM+ acquisitions have

an anomaly due to the failure of the Scan Line Corrector (SLC), on-board Landsat 7, and which resulted

in data loss and stripped images, also decreased the amount of images available. Even though there

are already some tools and software available to destripe these images, they can also lead to loss of

information which could be critical for later processing of the images (Barsi et al., 2007). This being said,

a choice was made not to use these images and work solely with the ones presented above.

The images were acquired between the months of May and September, as much as possible
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cloud free and around the same date. This is important in order to decrease the effect of seasonal

variations that affect specifically the coastal regions, like semi-diurnal tidal effect (Petropoulos et al.,

2015; Savvidis et al., 2005).

It is also important to mention that it is difficult to compare two scenes that were taken at

different times because of non-uniform tides. To minimize errors regarding this aspect, images during

similar tidal phase were taken into account. (Petropoulos et al., 2015)

Figure 6: Figure corresponding to the

Tide Table for 19 September 1989, ac-

quired from http://maree.shom.fr/.

For this purpose tidal predictions have been ac-

quired from SHOM, a French website that provides historic

calculations of water level by hour for different Port locations

around the world (http://maree.shom.fr/). This website

allows the user to choose the Port to be analysed and input

the date of choice. As a result a tide table and graph are

computed, where one can observe at what time of the day

low and high tide occurred and what were the minimum and

maximum heights, respectively (Figure 6). It is also possible

to choose a specific time of the day and compute water level

height. Figure 7 shows the tide predictions obtained for the

year of 1989 as an example. Time is possible to be chosen

in 5 minute intervals, so approximate times to the ones at

which the images were taken, have been considered.

Figure 7: Water Level prediction for 19 September 1989, acquired from http://maree.shom.fr/.

16

http://maree.shom.fr/
http://maree.shom.fr/
http://maree.shom.fr/


Since the only Port in the area of study was the one present in Beira, this Port was used for the

computation of tidal predictions for the entire area. It is recognized that generalizing tidal heights occur-

ring in Beira Port region as the same as for the entire area of study comes with some error associated,

which is considered in the discussion of the results.

Therefore, SHOM was used for computation of tide predictions for all the images acquired.

Table 4 shows the occurring tides and their respective heights. It was possible to infer that at the time

that all images were taken, high tide was occurring. When considering the images to use, tide height

was also taken into consideration, since if there was a huge difference between tide heights from one

year to the other, this would reflect in the results obtained when performing coastline change analysis,

and erosion results would be either overestimated or underestimated.

Table 4: Occurring tide and wave heights, at approximate times, for all images under study.

Date Occurring Tide Height (m) Local Hour
19/09/1989 High Tide 6.36 (07:05) 07:07
31/05/1995 High Tide 5.30 (06:50) 06:48
30/08/1999 High Tide 6.16 (07:20) 07:19
24/06/2004 High Tide 5.53 (07:25) 07:23
20/08/2007 High Tide 5.11 (07:35) 07:35
06/05/2015 High Tide 5.02 (07.40) 07:41

4.2 Pre-processing

Since the images were collected at Level-1T processing, it could be assumed that they where

already geometrically corrected and georeferenced towards each other. However in order to make sure

that this was indeed the fact, careful visual analysis was done using the swiping tool in ENVI and making

sure that no easily changeable infrastructures, like the airport in Beira and some roads, were overlapping

in all images used. This was done in order to avoid major errors in later evaluation of erosion areas and

change rates. The images were already in the same spatial reference frame UTM projection and under

a WGS84 ellipsoid, so there was also no need to register them towards each other. Even so, automatic

co-registration of the images was tested, however some distortions would often occur, so this method

was discarded.

During radiometric calibration of L1T data, TM and ETM+ sensors convert the reflected solar

energy to radiance and rescale it into an 8-bit digital number (DN) with a fixed range between 0 and 255

(Table 5) (Chander et al., 2007; Barsi et al., 2007). These DN values can be converted into radiance

values using bias and gain values specific for the scene under study (Chander et al., 2007). This

information is contained within the metadata file of each image. Landsat 8 OLI sensor is more sensitive

which translates in this data being rescaled into 16-bit DN values with a range between 0 and 65536.

Also, this data has been converted to reflectance, instead of radiance (USGS, 2016c).
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When performing Dark Object Subtraction (DOS) in ENVI, it was observed that no visible

changes between the image obtained and the source image could be seen. DOS searches the im-

age for the darkest pixel and subtracts its value from every pixel in the band bringing the minimum value

down to 0. However, when computing statistics for both source and DOS images it was possible to see

that no changes in minimum value occurred. This was due to the fact that L1T images already have

this correction applied and the minimum value for each band was already 0. This allowed to reach the

conclusion that no further radiometric correction would be performed.

Table 5: Statistics results representing DN values for Landsat image from 1989.

Basic Stats Min Max
Band 1 0 255
Band 2 0 232
Band 3 0 255
Band 4 0 255
Band 5 0 255
Band 7 0 255

In the end, it was decided that no further pre-processing would be done and the images would

be used as acquired since the quality of their georeferencing and radiometric calibration was deemed

satisfactory.

Before starting with the analysis, all images were clipped using the resize tool in ENVI (Figure

8), since there was a great part of the images which represented the interior and not the coastline area.

With this done, the images were ready to proceed with coastline mapping by employing two different

land/water classification approaches.
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Figure 8: Image after resizing, corresponding to the year of 1989 at 3-2-1 (RGB) band composition.

4.3 Processing

4.3.1 Coastline mapping

Before proceeding with implementation of the classification methods in order to classify the

images in two classes, "land" and "water", three aspects, for posterior coastline extraction, were taken

into consideration:

- Class "Land" would include sand areas, beaches and sand dunes;

- Intertidal zone should be classified as "Water";

- Intertidal zone considered as land should be minimal or none at all.

The intertidal zone, often referred as littoral zone, is defined as the part of the coastline that is

submerged during high tide and exposed at low tide (UNEP, 2001). As it was presented above, at the

time the images were taken, high tide was occurring, which means, the intertidal zone is expected to be
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submerged. As such, it should be considered as water class.

At 5-4-2 (RGB) band composition, the intertidal zone can clearly be seen, when compared with

3-2-1 (RGB) (Figure 9). How this zone is classified will greatly influence how the coastline is delimited

and the following results obtained.

Figure 9: Intertidal zone difference at 3-2-1 (RGB) band composition, on the left, and at 5-4-2 (RGB), on
the right, for 1989 image.

To classify the images and delineate the coastline, two different approaches were followed:

(1) Discrimination of land and water interface for coastline identification through the use of the Modified

Normalized Difference Water Index (MNDWI) and

(2) a semi-automatic image classification method based on Support Vector Machines (SVMs).

After employing different methods this two were the ones that reproduced a more clear and

accurate coastline for the region under study. Both methods were generated using ENVI 5.0.

The MNDWI water index is generated making use of the band math function in ENVI software

by combining the green and mid-infrared bands. The green band is sensitive to water turbidity and

it can be useful to discriminate broad classes of vegetation. The mid-infrared band exhibits a very

strong contrast between land and water since there is a high degree of absorption by water and strong

reflectance by vegetation and natural features in this range. This combination of bands makes this

algorithm very useful for the discrimination between land and water. (Ghosh et al., 2015; Xu, 2006)

The MNDWI is estimated as,
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MNDWI =
Green−MIR

Green+MIR
(1)

where, green corresponds to band 2 and band 3 in TM and Landsat 8 images, respectively, and MIR

(midle-infrared) corresponds to band 5 and band 6, in TM and Landsat 8, respectively.

This ratio of bands generates results between -1 and 1. Negative values represent land fea-

tures while positive values represent water features (Xu, 2006). Afterwards, histogram thresholding was

performed over the MNDWI images to create two classes, land and water, from which the coastline was

extracted directly.

SVMs is a supervised classifier that has several advantages when compared with other classi-

fication approaches. "SVMs obtain their decision directly from the training data in a suitable space that is

described by a kernel function" (Petropoulos et al., 2015). This method, contrary to others, is also easy

to implement and has been implemented so far in different types of Earth observation data, at different

scales, and generated reliable and promising results (Huang et al., 2008; Otukei and Blaschke, 2010;

Petropoulos et al., 2012a,b; Volpi et al., 2013). However, compared to more traditional methods, the

implementation of SVMs for coastline delineation is still very ill explored (Petropoulos et al., 2015).

Before starting with implementation of the SMVs, images were loaded into ENVI in a 5-4-2

(RGB) colour composite, in TM images, and 6-5-3 in the Landsat 8 image, which is relatively similar to

true colour composite of the Earth surface and depicts the interface between land and water very well

(Alesheikh et al., 2007). As seen in figure 9 this will also facilitate during validation of the results since it

helps distinguishing between land, water and intertidal zone clearly.

SVMs was implemented in each of the images at their original spatial resolution. This was

done in two steps. First, pixels were collected separately for each of the images on a random sampling

strategy, through the selection of regions of interest (ROIs) representing each class, "land" and "water".

Second, a multi-class pair wise classification was implemented where SVMs was applied using all the

sensor reflective bands to define the feature space. This pair wise SVMs classification was performed

using a non-linear kernel function, the Radial Basis Function (RBF) (Petropoulos et al., 2015). This

kernel requires the definition of a small number of parameters in order to run and it has been shown

to produce good results in a range of classification studies (Kavzoglu and Colkesen, 2009; Petropoulos

et al., 2010; Yang, 2011).

In order to apply the SVMs, four parameters needed to be specified, the gama parameter, the

penalty parameter, pyramid levels and the classification probability threshold. To do this parameterisation

recommendations provided in ENVI On-line Software Users’s Manual (ENVI, 2016) were taken into

account as well as values used in previous studies (Petropoulos et al., 2015). The gama parameter is

defined by the user and is normally equal to the inverse of the number of spectral bands of the image

used each time. In this study this value is 0.167 for TM imagery, since 6 spectral bands were used, and
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0.125 for Landsat 8 imagery, where 8 spectral bands were used. The penalty parameter is a floating

point value greater than 0, that controls the trade-off between allowing training errors and forcing rigid

margins. To ensure accuracy it was set to the maximum value, 100, which is also the default one.

Pyramid levels parameter was set to 0, which means that each image was processed at full resolution.

Classification probability threshold was set to 0, the default value, which forces all image pixels to be

classified into one class label (ENVI, 2016; Petropoulos et al., 2015).

In the end, this method produced an image classified in two classes, land and water, from which

it was possible to extract the coastline.

When analysing the results from both methods, MNDWI and SVMs, it was possible to observe

that they delivered results slightly different in terms of where the interface between land and water was

created. To better understand these results, validation was needed in order to be sure which of these

methods was delivering a more accurate and correct coastline.

After validation, areas that reflected higher changes in terms of erosion and/or accretion, were

identified and further analysis was performed for these regions, with coastline change detection, by cre-

ating erosion and accretion polygons, and afterwards with calculation of the coastal vulnerability index.

4.4 Coastal Vulnerability Index (CVI)

The CVI is determined by combining relative risk variables to create a single indicator (Jana

and Bhattacharya, 2013). In this study and following the work done by Jana and Bhattacharya (2013),

three risk variables were considered: coastline change rate, land-use and population density. The CVI

is calculated based on the risk values assigned to each of the input parameters and is computed as the

square root of the product of all ranked variables and divided by the total number of variables (n) (Jana

and Bhattacharya, 2013; Chandrasekar et al., 2013; Kumar et al., 2010).

Equation 2 represents the CVI.

CV I =

√
[a · b · c]

3
(2)

Where a= risk rating assigned to coastline change rate; b= risk rating assigned to land-use cover and

c= risk rating assigned to population density.
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4.4.1 Coastline Change Rate (’a’)

After compiling the coastline positions in ArcGIS 10.0, making use of the Append tool, the

Digital Shoreline Analysis System (DSAS 4.3) developed by USGS in 2010 (Himmelstoss et al., 2009)

was used to estimate the rate of coastline change. The DSAS has been successfully employed by

various authors, which underlines the suitability of this tool for the analysis that is being undertaken

here (Fletcher et al., 2012; Thieler and Danforth, 1994a,b; Himmelstoss et al., 2009). The DSAS is an

ArcGIS extension that uses a measurement baseline method to calculate rate of change statistics for

a time series of coastlines. The baseline is constructed by the user and serves as the starting point

for all transects cast by the application (Addo and Kodzo, 2013). Inputs needed for this application

consist in the constructed baseline, coastlines for several years, appended to each other and need to

be dated, and transect distance (Kumar et al., 2010). The rate of change is calculated for the previous

identified regions within the study area that suffered the most visible changes. 1900 transects were cast

at 100 meter interval and historical rates of coastline change were then calculated for each transect

using end point rate (EPR) statistics with 95% confidence interval. This method is calculated by dividing

the distance of coastline change by the time elapse between the oldest and the most recent coastline,

in this case approximately 26 years (Figure 10) (Himmelstoss et al., 2009).

Figure 10: Example of how EPR statistics are calculated, acquired from Himmelstoss et al. (2009).

EPR statistics are easy to compute and have a minimal requirement of only two shorelines.

The greatest disadvantage is that in cases where more data is available, like tidal data for example,

the additional information is ignored (Himmelstoss et al., 2009). However, in this study it is not being

considered any additional information besides the coastline positions for the calculation, and so this

method was deemed to be a good choice.

After calculating the EPR and taking into account the risk categories employed by Jana and

Bhattacharya (2013), coastline erosion and accretion rates were grouped in four risk classes (Table 6)

and risk maps obtained.

In the table below, negative values represent erosion and positive values represent accretion.
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Table 6: Risk classes assigned to coastline change rate parameter, adapted from Jana and Bhattacharya
(2013).

Risk Classes Change Rate (m/year)
Severe Erosion < -10

Erosion -10 - 0
Accretion 0 - 10

High Accretion > 10

4.4.2 Landuse Cover (’b’)

The protection of an area deemed vulnerable, will only be considered if the said area is rec-

ognized as sufficiently important in terms of economic, cultural and environmental aspects that justify

its protection. This is why landuse type is of significant importance in determining vulnerability of an

area (Jana and Bhattacharya, 2013; McLaughlin et al., 2002). There are many ways to assess the value

of land, such as monetary terms, placement cost, in aesthetic terms or even in terms of conservation

value. In this study, landuse types were grouped and ranked according to economic value. This was

done based on a subjective assessment of which landuse types were more or less valuable, specially to

humans (McLaughlin et al., 2002).

For the purposes of this present study, data from DINAGECA (Direcção Nacional de Geografia

e Cadástro) of Mozambique, relative to the year of 2009, has been used to assess landuse. This

Shapefile was loaded into ArcMap and a buffer of 1km, with landward direction from the coast, was

computed. Landuse types occurring in this buffer zone were identified and ranked accordingly. Grouping

and ranking were done based on the classifications performed by Jana and Bhattacharya (2013) and

McLaughlin et al. (2002) (Table 7).

Industrialized areas, urbanized and semi urbanized dwelling areas are included in the "very

high capital" category. Salt pans and agricultural areas are within the "high capital" landuse category.

Mangroves and different types of vegetation have been mapped within the "moderate capital" category,

while, bare soils and river banks were mapped within the "low capital" landuse category.

In the region of study it was possible to identify 11 different types of landuse areas. Industri-

alized areas, urbanized and semi-urbanized dwelling areas are found in the city of Beira, as one would

expect. Rainfed cultivation is also found near the coast of the city. North of the city, salt pans, meadows

and bare soil areas can be identified. The rest of the coastline is basically dominated by the existence of

Mangroves, which have great importance in the Mozambican coast and their disappearance contributes

to increased erosion hazard.

Mangroves provide several forest resources such as high-grade timber and non-timber prod-

ucts that support rural economies as well as eco-tourism. Mangroves are very important in coastal

areas since they protect against natural disasters such as tsunamis, cyclones and erosion. In Mozam-
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bique they are of great importance since they act as natural flood barriers, a very important function,

since about 44% of the country’s population live in coastal areas, many of them in floodplains (Palalane

et al., 2015). Over the past decade, floods have become bigger and more frequent, which is predicted

to further increase (Chevallier, 2013). However, densely populated zones have intensified the clearing

of mangroves for coastal development, agriculture, aquaculture or for resource use, such as the case

of Beira, which intensifies coastal vulnerability (Cohen et al., 1997; Chevallier, 2013). Beira has been

identified as the Mozambican city most vulnerable to sea level rise and to the increase in frequency and

intensity of cyclones (Palalane et al., 2015; Theron et al., 2012). Mangroves provide a natural defence

against flooding and act as a barrier towards natural induced erosion. However, mangroves in the city

are also seen as a great economic resource, not only in terms of fishing but charcoal burning is rapidly

depleting mangrove forests that still remain in the city outskirts. Even though the sale of mangrove

wood is prohibited, illegal activities still continue to take place decreasing even further this so precious

resource. Not only that but urban growth is placing adittional pressure on mangrove areas, with grow-

ing demand for wood and non-timber products (Chevallier, 2013). Sofala Bay region is estimated to

have the largest mangrove area and the second highest rate of deforestation of mangroves in Mozam-

bique, with 4.9% per year (Sitoe et al., 2014). It is vital that traditional engineering interventions be

accompanied by restoration of mangroves and with plantation of trees on dunes. This has been in fact

recognized by the government and the National Institute of Disaster Management (INGC) has drawn a

master plan for 2006-2016 which includes this interventions and mangroves are seen as an integral part

of Mozambique’s climate change adaptation and disaster risk reduction response (Chevallier, 2013).

Table 7: Risk classes assigned to Landuse parameter, adapted from Jana and Bhattacharya (2013).

Risk Classes Landuse areas

Very High Capital
Urbanized dwellign area

Semi-urbanized dwelling area
Industrialized area

High Capital Salt Pan
Rainfed cultivation

Moderate Capital Mangroves
Meadow, Aquatic Meadow

Low Capital Bare soils
River banks

It is important to note once more, that landuse areas were identified for the buffer zone of 1km

landward. Regions in the interior have other types of landuse, however, for the purposes of this study

they are not considered.
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4.4.3 Population density (’c’)

There are two ways to look at the effects of population density over an area. Population can

be looked as an ’economic’ variable since people in highly populated areas will act to protect their

properties from erosion. However, looking by this perspective, areas which have fewer people, will not

suffer the same urge or willingness for protection as the ones in densely populated ones. On the other

hand, heavy population in coastal areas can be interpreted as an "erosion-inducing" variable, since the

presence of large numbers of people near the coast may produce damaging impacts on coastal areas.

Both this views are complementary, since one affects the other in increasing or decreasing vulnerability

(Jana and Bhattacharya, 2013; McLaughlin et al., 2002). This is why it becomes essential to study this

parameter when assessing the vulnerability of the coast. As such, coastal areas with high population

density are considered to be highly vulnerable and low population density areas are considered to have

low vulnerability (Jana and Bhattacharya, 2013).

Census data from 2007, obtained from Mozambique Instituto Nacional de Estatística, was used

to evaluate and estimate this parameter. For each province, census data available was divided by

the respective area and population density obtained. Data relative to the area of each province, was

obtained from DINAGECA (Direcção Nacional de Geografia e Cadástro) of Mozambique, last updated

in 2009. Following the categories assigned by Jana and Bhattacharya (2013), population density over

the area of study was then grouped in four risk classes (Table 8).

Table 8: Risk classes assigned to Population Density parameter, adapted from Jana and Bhattacharya
(2013).

Categories Population density
(people/km2)

Very High Density > 1500
High Density 1001 - 1500

Moderate Density 501 - 1000
Low Density < 500

4.4.4 Computation of the CVI

Table 9 presents an overview of the overall variables and their rankings. Each of the three

variables was loaded into ArcMap software environment and a "Fishnet" was created over the coastline,

with a cell size of 500x500 meter (Figure 11). After a few cell sizes were tested, this was considered to

be enough in order to proceed with the classification.

This Fishnet was intersected with the 1km buffer created in regards to 1989 coastline as base-

line. From this intersection resulted the area between the 1km buffer line and the baseline to be divided

into polygons. Each of the polygons were then ranked for each parameter, according with the classi-

fication displayed in table 9, with a value between 1 and 4, by manipulating the attribute table. After
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Table 9: Vulnerability classification, adapted from Jana and Bhattacharya (2013).

Risk Rating
Variables Low (1) Moderate (2) High (3) Very High (4)
Coastline

Change Rate
(m/year)

>10 0 - 10 -10 - 0 <-10

Landuse Bare soils
River banks

Mangroves
Meadows

Salt Pans
Irrigated cultivation
Rainfed cultivation

Urbanized
dwelling area

Semi-urbanized
dwelling area

Industrialized area
Population

density
(people/km2)

< 500 501 - 1000 1001 - 1500 >1500

having this ranking performed, CVI was calculated, as represented in equation 2, by making use of

"Field calculator" option. In the end, vulnerability maps for every parameter and for the CVI were ob-

tained and visual analysis of the results was then performed.

Figure 11: A - Exemplification of how the Fishnet was created over the coastline; B - Zoom over a
specific region of the coastline.
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4.5 Methods used for validating the results

For the validation of the results, Google EarthTM images as well as the Eolian Mapping Index

(EMI), were used. For the images in recent years (2004, 2007 and 2015) this could be observed by

comparing the MNDWI and SVMs images with high spatial resolution images from Google EarthTM and

with the EMI index. For older images (1989, 1995, 1999) the validation could only be done via EMI index

due to the unavailability of images this old in Google EarthTM to allow comparison (Table 10). Google

EarthTM images were very useful to identify intertidal zones, when these cannot be clearly seen in the

images acquired or from the indexes employed.

EMI is an index that uses the red and near-infrared spectral bands to generate an image that

emphasizes areas with low vegetation density and high soil reflectance. The near-infrared (NIR) and red

(R) spectral bands combined with the ratio of red to near-infrared (R/NIR) were used, respectively, as

RGB components to make a color composite (NIR - R - (R/NIR)). In the results obtained it is expected

that the brighter tone of yellow represents sand areas, while bright red regions represent areas with high

vegetation density (Khiry, 2007). Figure 12 shows the example of 2007 image after implementation of

the EMI. This index was used with the objective to validate the classification obtained through MNDWI

and SVMs application, acquire a better delimitation of the coastline and identification of erosion and

accretion areas. It was generated using ENVI and ArcGis environment.

It is possible to infer from the table below that for the years of 2004 and 2007 the images

acquired from Google EarthTM are relatively close in date to the ones under study here. However, for the

validation of 2015 image, it was not possible to acquire a single image to validate the entire area, and so

several images had to be used, being one very close in date with the one acquired from Earth Explorer.

Table 10: Data used for validation of the scenes under study.

Aquisition Date Data Used for Validation
19/09/1989 EMI
31/05/1995 EMI
30/08/1999 EMI
24/06/2004 Google Earth image acquired on 26/10/2004; EMI
20/08/2007 Google Earth images acquired on 09/08/2006 and 11/07/2007; EMI
06/05/2015 Google Earth images acquired on 30/04/2013, 09/08/2013 and 20/05/2015; EMI

To assess for the accuracy of the land/water classification done by the implementation of SVMs,

kappa coefficient (κ) and overall accuracy were calculated by computing confusion matrices in ENVI for

each classified Landsat image. The overall accuracy is calculated by summing the number of correctly

classified pixels and dividing them by the total number of pixels, the sum of the pixels in all the ground

truth classes. The true class of pixels is defined by the ground truth regions of interest (ROIs). The

kappa coefficient is another measure of the accuracy of the classification and measures the agreement

between classification and ground truth pixels. A value of 1 represents perfect agreement while a value

of 0 represents no agreement. (ENVI, 2016)
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Figure 12: Image obtained after computation of the EMI for the year of 2007. Color Composite (NIR - R
- R/NIR).

Accuracy assessment for MNDWI images was done exclusively through visual analysis of the

obtained images with Google Earth TM and EMI index. No statistics were calculated since the approach

for extraction of the coastline through these images is very direct.

Validation of change detection areas, erosion and accretion polygons, was performed once

again by visual analysis of source images and EMI index which allowed to have a clearer understanding

if recession and accretion were due to movements in land or due to movements in dynamic regions, like

sand. Theron et al. (2012) presents results for erosion and accretion areas in the city of Beira between

1991 and 2004, which will be taken into consideration in the discussion of the results.

It was not found during the bibliographic research, CVI studies that had been performed in

this region. As such, no results are available to compare and validate the ones obtained in this thesis.

Maansson (2011) presents a value of 1 m/year for change rate along Beira city, which will also be taken

into consideration during the discussion of the results.
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5 Results

After obtaining the MNDWI images, histogram thresholding was performed. Figure 13 shows

the images obtained after the computation of the MNDWI for the years of 1995 and 2015 as an example.

Figure 13: MNDWI images for the years of 1995, on the left, and 2015, on the right.

It is possible to observe from these images that the computation of the MNDWI generates an

image where there is a great contrast between land and water features. This is a result of water being

enhanced, and so represented with a lighter colour, while land is suppressed, with a darker tone, by

the application of this index (Xu, 2006). The green square in the 1995 MNDWI image, delimits a region

where deeper analysis regarding the classification employed will be performed further in this study.

The image generated is characterized by values between -1 and 1, where negative values rep-

resent land features while positive values water features (Xu, 2006). However, sometimes this relation

is not so direct and land values can be found above 0, which has to be carefully analysed and taken

into consideration when performing the classification into these 2 classes. Table 11 gives the thresholds

applied to the different images in order to obtain an acceptable classification into water and land. Figure

14 shows the result of this classification for the image of 1995 as an example. Here, one can see that

there seems to be a good classification of land and water features in regard to the coastline, but some

other elements in the image are also being classified as land, when in fact they are not. Even though

they are not shown here, this situation also occurs in the classified images of 1989, 1999, 2004, 2007
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and 2015. Although this is true, for this study it poses no immediate problem since the objective of this

classification is later extraction of the coastline and so it will not interfere with the results obtained for

coastline change analysis.

Figure 14: MNDWI Classified (land and water) image from 1995.

Table 11: Thresholds considered for classification of the MNDWI images into land and water when
performing histogram thresholding.

Classified Map (Year) Land Water
1989 (-)1 - 0.15 0.15 - 1
1995 (-)1 - 0.05 0.05 - 1
1999 (-)1 - 0 0 - 1
2004 (-)1 - 0 0 - 1
2007 (-)1 - 0 0 - 1
2015 (-)1 - 0.05 0.05 - 1

Classification after employing Support vector machines also generated images with 2 classes,

land and water (Figure 15).
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Figure 15: SVMs Classified (land and water) image from 1995.

As mentioned in the previous section, to assess the accuracy of land/water classification, from

SVMs, kappa index and overall accuracy were computed for all the images under study, which can be

found in table 12.

Table 12: Kappa Coefficient and Overall classification accuracy for Landsat images under study.

Classified Map (Year) Kappa Coefficient Overall Classification Accuracy (%)
1989 0.9991 99.96
1995 0.9943 99.73
1999 0.9909 99.57
2004 0.99 99.58
2007 0.9965 99.84
2015 0.9964 99.84

It is possible to conclude from table 12 that the overall accuracy of this classification is very

high, with all classified images presenting a value close to 100%. Regarding the kappa coefficient, the

value obtained is also very high, close to 1 in all images. This suggests that this technique is indeed

very robust. It is important to note that the pixels considered for the regions of interest, in order to

perform SVM’s classification, were selected along the coast, respectively as Land and Water class. This

contributed to obtain accurate classification results as it is possible to conclude from the data in the table
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above.

After all images were classified, using both methods, extraction of the coastline was performed.

For MNDWI classified images, coastlines were extracted directly from ENVI software and loaded into Ar-

cMap for overlaying of all six coastlines. SVMs classified images were loaded into ArcMap and coastlines

extracted making use of the "contour" tool, found in Spatial Analyst toolbox. However, it is not enough to

simply extract the coastlines and proceed with further analysis and manipulation of the results. Careful

validation is needed to observe if both methods employed are in agreement and if not, which of them

produces more accurate and less error prone results.

5.1 Extracted Coastlines

When proceeding with validation of the extracted coastlines, it was possible to observe that

there were clear differences between the coastlines obtained by the two methods, MNDWI and SVMs.

While performing histogram thresholding, parts that were classified as "land" had values above

0, which meant that some adjustments to the thresholds used for classification had to be done, as men-

tioned above. It was possible to notice that doing this procedure would affect the amount of intertidal

zone considered as land, and which induced an overestimation of erosion, when later performing coast-

line change analysis. This was very clear during validation using Google Earth imagery, for the images

of 2004, 2007 and 2015 and using the EMI index, for all images.

One of the greatest problems with the implementation of the MNDWI, found here, lies in the

fact that one cannot distinguish clearly the intertidal zone from the rest of the land, and some parts of

it end up being considered as land, overestimating the area of erosion. A region was chosen as an

example of this problem since one of the major issues in delineating the coastline without including the

intertidal zone was precisely in this region. The area chosen is delimited with a green rectangle, seen in

figure 13. Although only the example of the extracted coastlines for 1995 is presented here, this situation

happened in this area for almost every image in the entirety of the study period. Other areas were also

affected by this problem but with less relevance. Figure 16 shows an extract of the MNDWI image for

the selected region with the coastline obtained through histogram thresholding.

Another problem occurred in some cases where a few parts that were surely land were not

delimited until higher positive values were reached. With this, the intertidal zone delimited, as land

class, in other areas further increased, and with it the error associated with later estimation of erosion.

When overlapping the extracted coastline from the MNDWI image with the EMI image, one can clearly

observe that some of the intertidal zone was being considered as land (Figure 17).

In the EMI image the brightest tone of yellow corresponds to sand areas, and since it was

decided this regions would also be considered as land in the limitation of the coastline, it was expected

that the land/water boundary is precisely at the end of this sand regions. However, analysing figure 17,
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one can see clearly that the coastline obtained via MNDWI image, blue line, was considering much more

than just until this bright yellow regions.

On the other hand, the coastline obtained from SVMs supervised classification was delimited

right at the end of these sand areas and basically no intertidal zone was considered in almost the entirety

of the region of study and for all the images classified. An example of this is presented in figure 18, where

the intertidal zone can be clearly seen (very pale tone of yellow after the coastline) with the coastline

delimiting the land very accurately and in this specific example none of the intertidal zone was included

in this delimitation.

Finally, when overlapping the coastlines extracted from both methods with the EMI (Figure 19),

the difference in coastline positions was clear. While the coastline obtain through SVMs supervised

classification delimited very accurately the land/water boundary, the MNDWI derived coastline did not,

since it considered a considerable part of the intertidal zone as land. For this reason, conclusion was

reached that for more accurate analysis of the results in subsequent sections of this thesis, the coastline

obtained through SVMs supervised classification would be used, since it was expected to reproduce a

more accurate and exact results with decreased error associated.
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5.2 Change Detection

After reaching the conclusion that coastlines extracted through the implementation of SVMs

were more accurate, they were used for further analysis of erosion along the coastline. To detect

changes, the resulting coastlines from the classified images were overlaid in ArcGIS 10.0 and coast-

line positions could be seen for each date (1989, 1995, 1999, 2004, 2007 and 2015). Different colours

were given to the coastline of each year in order to make it easier to see the differences between them.

Figure 20: Coastline positions (1989-2015), with sites delimited from A to E.

The obtained coastlines were studied carefully through visual analysis, in order to identify ero-

sion and accretion dominant locations. This was performed while comparing and validating coastline

changes with the Landsat source images and EMI index. From this analysis 5 sites (A-E) were identified

as the ones where erosion and accretion changes were greater when compared to others. These sites

are identified in the image where all coastlines are overlaid (Figure 20).

It was possible to notice a specific trend through out the years. In case of erosion, the coastline
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positions would shift landward from one year to the following. This means that from 1989 to 2015

there was constant recession of the coastline almost through out the entire area of study. It was also

observed, in very few cases, that from one year to the other, in regards to each image, the coastline

shifted landward, but in the following year it would shift seaward again. When these changes happened

they were seen in sand regions, which have a dynamic nature and so, not surprising that this might

happen since it depends from the sediments brought by the sea water and from sea currents.

Where accretion was concerned, the same trend was observed but in this case, from 1989 to

2015 a constant increase of coastline position, with seaward direction. There were identified regions

where this increase was due to sand movement and others where land seemed to be increasing over

the years. Deeper analysis of this situation is done further in this section and in later discussion of the

results.

Some of these situations are present and can be clearly observed in the figures of the sites (A-

E) chosen to perform deeper evaluation of coastline changes.

Since this trend was noticed, the conclusion was reached that there was no need to represent

coastline changes for all the coastlines delineated but instead, a global analysis of the areas lost or

gained between the oldest (1989) and the most recent coastline (2015) was performed. For every site

chosen, polygons were created between these two coastlines in order to create erosion and accretion

areas. Red areas represent erosion while green areas accretion.

Table 13 presents an overview of accretion and erosion areas and overall change in hectares

and hectares per kilometre.
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Site A

Figure 21: Coastline positions (1989-2015), for Zone A.

Figure 22: Difference between 1989 and 2015 coastline, for Zone A.

In this site, two erosion areas and one accretion area can be identified. One can observe that

when erosion occurs, continuous recession of the coastline through out the years can be seen (Figure

21). Where accretion occurs, the area increased through out the period of study. Figure 22 shows this

regions highlighted with respective colours, red for erosion (A1 and A3) and green for accretion (A2).
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While performing validation of these changes it was possible to identify that all three of them

represented changes due to sand movement. This could be clearly confirmed by analysing EMI images

from 1989 and 2015 where changes in sand can be identified easily, since this feature had a bright tone

of yellow. Figures 23 and 24 show these changes with EMI images from 1989 and 2015 respectively.

Landsat source images also confirmed this fact.

Figure 23: 1989 EMI image with respective coastline delineated.

Figure 24: 2015 EMI image with 1989 (purple) and 2015 (blue) coastlines overlapped.
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The arrows in figure 24 are pointing to the losses in sand between 1989 and 2015, and the

circle the gain in sand in the same period.

Site B

Figure 25: A - Coastline positions (1989-2015), for Zone B; B - Close up of coastline positions for Ponta
Gea and Praia Nova regions.

In the region zoomed (Figure 25B), one can see the regression of the coastline throughout

the years in study. There was no increase of coastline from one year to the other, there was always

41



regression. Validating this results with source images and EMI index it was possible to observe that in

both regions where erosion occurred this represented an overall loss in land area. This is very warring

specially in B2, because it represents a serious retreat of land in a very populated region, such as the

city of Beira.

Figure 26: Difference between 1989 and 2015 coastlines, for Zone B.

Where accretion occurred (B3), after validation, it was possible to conclude that this illustrated

a movement in sand. This was clearly visible in the EMI image since the evolution of this region through

out the years was represented with a bright tone of yellow (Figure 27). Landsat source images at

RGB band composition also proved this point. The observed accumulation of sand was a result of the

construction of seawalls in the region immediately East of B3.
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Figure 27: Validation of erosion and accretion for B2 and B3 in the city of Beira with 1989 EMI image,
on the left, and 2015 EMI image, on the right.

Site C

Figure 28: Coastline positions (1989-2015), for Zone C.
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For this site, it was observed that through the years, there was recession of the coastline in

C1 and C3, meaning that from 1989 to 2015 eroded area continued to increase (Figure 28-29). This

areas concern to losses in mangrove area, since this region is dominated by the existence of mangrove

forests.

Figure 29: Difference between 1989 and 2015 coastlines, for Zone C.

Accretion in this case seemed to be due to an increase in land area, and not sand movement. This is

clearly observed in figure 30. This increase is most likely to be in vegetation establishment. EMI index

was also employed to validate this fact and it was observed that this region is characterized by a strong

tone of red, which indicates high levels of vegetation density, contrary to yellow tones which indicate low

vegetation density and high soil reflectance (Figure 31). This means that the probability of this increase

in area, being due to vegetation establishment is quite high. In fact, this entire site is characterized

by vast mangrove forests, and C2 accretion area is most likely due to mangrove establishment in this

region. For why only in C2 this seems to occur, an attempt will be made to reach an explanation in the

section of this thesis concerned with discussion of the results.

It is also possible to identify in the figures 28-31 some islands where accretion or erosion

occurred. Although this changes were quite visible and in some cases major, they were not considered

44



for the estimation of overall change in area of coastline. Precisely because they were not considered

to be part of the coastline in the wake of this study. However, it has to be recognized, especially in the

cases where the size of these islands is decreasing, that recession can contribute to increased erosion

pressure over some areas of the coast, once this islands are gone.

Figure 30: Source image from 1989, on the left, and 2015, on the right, delimited for C2 accretion area.

Figure 31: EMI images from 1989, on the left, and 2015, on the right, delimited for C2 accretion area.
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Site D

Figure 32: Coastline positions (1989-2015), for Zone D.

Figure 33: Difference between 1989 and 2015 coastline, for Zone D.
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In this site, only erosion was observed and once again through out the years only recession oc-

curred, as seen by the images above. However, there were two situations here. D1 and D2 represented

areas where there was loss of land whilst D3 illustrates erosion relative to sand movement. Figure 34

shows the difference in land eroded from 1989 to 2015 for D1 and D2.

Figure 34: Source image from 1989 overlaid with 1989 and 2015 coastlines.

Source images as well as EMI images have also been employed for D3 erosion area validation.

However, when doing so, it was possible to observe that 1989 coastline was being delineated a little over

the real water/land boundary. Figure 35 illustrates the 1989 EMI image overlaid with 1989 and 2015

coastlines. One would expect that the land water boundary for 1989 would be delineated right at the end

of the bright yellow area, representing sand. However, this does not happen and some of the intertidal

zone is being considered as land, which results in an overestimation of erosion area. Actually, one can

see from figure 35 that except for the part delimited with a rectangle, 2015 coastline is a much better

representation of the real coastline in 1989 than the one actually derived.

This was one of the very few regions in the entire area of study where this situation actually

happened in a coastline derived from SVMs approach. In fact, only in 1989 coastline this problem

was found. It is important to notice that this overestimation of the coastline in this region was not

even close to the one happening on coastlines derived from MNDWI images, reason for which they

were discarded. Validation of the coastlines from 1995, 1999, 2004 and 2007, revealed that they were

delineated correctly. In fact, if 1989 coastline had been correctly delineated, it would be approximately at

2015 coastline level, as mentioned above. It was observed that from 1989 to 2007 there was accretion,

which means that sand accumulated in this region. However, from 2007 to 2015 the coastline went back,

approximately, to its original position of 1989. This means that the overall balance of change through

out the entire period of study, 1989-2015, is basically null. This can be observed in figure 36.
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Figure 35: 1989 EMI image overlaid with 1989 and 2015 coastlines.

Figure 36: 1989 EMI image overlaid with 2004, 2007 and 2015 coastlines.
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Since estimation of erosion area was done for the overall time elapsed, conclusion was reached

that D3 erosion area seen in figure 33, would not be considered for the estimation of overall change area.

Figure 33 also shows two islands where erosion and/or accretion can be seen, however as for

the same reason specified in the previous site, these areas were not considered for estimation of overall

change area.

Site E

Figure 37: Shoreline positions (1989-2015), for Zone E.

In this site it was observed that from 1989 to 2015, accretion areas always corresponded to an

increase in area, whilst for erosion areas only recession occurred, eroded area continuously increased

(Figure 37). From Figure 38 one can observe that E1 represents an accretion process and E2 to E5

erosion processes.
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Figure 38: Difference between 1989 and 2015 coastline, for Zone E.

Accretion in E1 involved an increase in land area which is illustrated in figure 39, where one

can see that the largest increase occurred between 2007 and 2015. This increase seems to be related

to vegetation establishment. The EMI image for E1 also clearly shows the area increased with a strong

tone of red, characteristic of high vegetation density. This region is also characterized by the existence

of mangrove forests, which probably means that this increase in area was most likely due to mangrove

establishment.

Erosion in E2, E3 and E5 represent loss in overall land area while erosion in E4 relates to sand

movement. This can be seen in Figure 40, where in E4 the bright tone of yellow, representative of sand,

is clearly visible. The other regions do not seem to be high density vegetation areas and so there is a

high probability that this erosion represented an overall loss in land area.
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Figure 39: 2015 source image overlaid with all the coastlines under study for region E1.

Figure 40: 1989 EMI image overlaid with 1989 and 2015 coastlines, for region E2-E5.
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The following table shows the overall change observed, in hectares, for each of the sites studied

here.

Table 13: Overall change area between 1989 and 2015 for sites A to E.

Site
Approximate

coastline stretch
size (km)

Erosion
(hectares)

Accretion
(hectares)

Overall change
(hectares)

Overall change
(ha/km)

A 29.77 123 60 (-) 63 (-) 2.12
B 21.09 79 17 (-) 62 (-) 2.94
C 25.27 324 76 (-) 248 (-) 9.81
D 9.45 83 0 (-) 83 (-) 8.78
E 53.26 169 111 (-) 58 (-) 1.09

From this table, one can conclude that site C was where erosion was by far the greatest and

accretion was more significant in site E. For all sites, erosion areas were always higher than accretion,

from where it can be inferred that these regions have higher predisposition for erosion than accretion.

Approximate change in coastline presented in table 13 refers to the studied areas and consid-

ering 1989 coastline as baseline.

It is possible to observe that site C was where overall change in ha/km was higher, followed

by site D. It is interesting to note that even though site D has to the lowest coastline size, it has the

second highest overall changed area. This means that these two sites are subject to greater forces that

contribute to erosion than the others. Site E was where overall change was lower with only (-) 1.09

ha/km. This result can be due to the fact that accretion was considerably high.

Although more sites that suffered changes could have been presented here, during validation

it was concluded that the changes occurred in other areas were not so relevant. Also, some areas

appeared to have suffered a significant change, however during validation this supposition was discarded

as changes were due to a bad delimitation of 1989 coastline position which resulted in overestimation of

actual erosion area.
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5.3 Coastal Vulnerability Index (CVI)

For the three parameters, risk classes where employed and risk maps obtained. Figures 41-43

show a general overview of the risk classes over the entire region of study.

5.3.1 Coastline Change Rate

Figure 41: Risk classes for Coastline Change Rate.

This map was obtained after EPR statistics were computed for the transects cast by the DSAS

extension for ArcMap.

In general, coastline change rate varies between -33.91 m/year and 29.47m/year, with the

average value being -2.64m/year.
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Figure 42: How transects were cast for a region within Site C, as an example.

Figure 42 shows an example of how transects were cast for a specific region within site C. From

the baseline, in black, transects were cast intersecting the coastlines for every year in study. It is from

this intersection and distance between coastlines that statistics can than be computed, in this case with

EPR. Transect length is determined by the user and in this case 900 meters.
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5.3.2 Landuse Cover

Figure 43: Risk classes for Land-use.

It is possible to observe from this map that more than 50% of the area of study is within the

Moderate capital, with mangrove forests being the landuse type more frequent inside this class. Very

High capital occurs in Beira city, as one would expect, with urbanized and semi-urbanized dwelling areas

dominating this class.
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5.3.3 Population Density

Figure 44: Risk classes for Population density.

This map shows that more than 60% of the area is within the low population density class,

which means that very few people, less than 500 people/km2, occupy these regions. As it would be

expected, very high density and high population density occur in the city of Beira, where the number of

people per square kilometre is either between 1000 and 1500 or higher than 1500.
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5.3.4 Site Specific CVI calculation

After obtaining the previous risk maps, it was deemed that it would be more interesting to study

in more depth coastal vulnerability for the previous identified sites (A-E), than for the entire study area.

In order to do this, a 1km buffer, using the 1989 coastline as baseline, was created. The

resulting buffer was then intersected with a Fishnet, which resulted in the area between the buffer and

the baseline, being subdivided into polygons. Figure 45 shows this intersection result for site C as an

example.

Figure 45: Result of Fishnet intersection with the 1km buffer.

After analysis of the parameters and respective risk classes for each one of these sites, making

use of the general risk maps obtained, these polygons where classified accordingly with a value between

1 and 4, translating the risk associated with each parameter. This meant that 3 columns were added to

the attribute table, one for each parameter. After this, another column was added for calculation of the

CVI, and vulnerability maps were computed.

For each site, risk maps for the three parameters and a final vulnerability map were obtained

and are presented below (Figures 46-65). Each risk map shows the 1km buffer classified for each

parameter and the 1989 coastline. For the stretch of coast of each site, the coastline was classified

according to the vulnerability values obtained.
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Site A

Figure 46: Risk classes for Change Rate, site A.

Figure 47: Risk classes for Landuse, site A.

In this site, for the 15.37 km of classified coastline, approximately 90% of the coastline recorded

erosion, and 10% recorded accretion. Regarding landuse, approximately 38% was within the high capital

class, composed by salt pans and rainfed cultivation, while 62% was within the low capital, composed

mainly by sand.
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Figure 48: Risk classes for Population density, site A.

Figure 49: Vulnerability Map, site A.

Relative to population density, approximately 13% of the area within the 1km buffer recorded

very high population density, 38% high population density and the remaining 49%, low.

In the end, the CVI was computed and the vulnerability map presented in figure 49, where

12.8% of the coastline presented a vulnerability index of approximately 3.46 (A1a), 25.1% with a value

of 3 (A1b), 12.7% with 1.73 (A1c), 39% with 1 (A3) and 10.4% with 0.82 (A2). The higher the value of

CVI the higher the vulnerability of a region.
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Site B

Figure 50: Risk classes for Change Rate, site B.

In figure 50, from a total of 21.09km of coastline classified, approximately 54.9% represented

erosion, 36.8% accretion and 8.3% high accretion.

Figure 51: Risk classes for Landuse, site B.
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Very high capital regions represent urbanized and semi-urbanized dwelling areas with more

than 1500 people per square kilometre, corresponding to approximately 66.6% of coastline. Low capital

areas are found in 25.9% of coastline stretch, with bare soil as the main landuse type present, and the

remaining 7.5% correspond to rainfed cultivation, high capital (Figure 51).

Figure 52, gives the risk classes for population density. It can be observed that approximately

71% of the coastline was within the very high population density, as it would be expected since this area

represents the city of Beira, highly populated. The remaining 29% correspond to high population density,

with 1001 to 1500 people per square kilometre.

Figure 52: Risk classes for Population density, site B.

From the vulnerability map (Figure 53), it is possible to infer that 25.6% of coastline had a

vulnerability index of 4, the maximum value, 32.7% a vulnerability of 3.26, 3.4% a vulnerability of 3, 4.1%

a vulnerability of 2.83, 8.3% a vulnerability of 2.31 and finally, 25.9% a vulnerability of 1.73. Classification

in this site in general very high.
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Figure 53: Vulnerability Map, site B.

Site C

In this site, approximately 25.27km of coastline were studied in regards to vulnerability. Figure

54 shows the risk map for change rate, where it can be seen that all classes occurred within this site.

Severe erosion occurred in approximately 11.9% of the coastline, erosion class in 69.5%, accretion in

12.3% and high accretion occurred in 6.3% of the coastline.

Regarding landuse, this site is characterized entirely by the existence of mangroves and in the

central region by some open woodland, corresponding to the moderate capital class (Figure 55).

Low population density occurred in this site, with less than 500 people per square kilometre

(Figure 56).

These rankings led to a vulnerability map where 11.9% of the coastline presented a vulnerability

of 1.63 (C3b), 69.5% a vulnerability of 1.41 (C1, C3a and C3c), 12.3% a vulnerability of 1.15 (C2 lighter

green), and finally, 6.3% a vulnerability value of 0.82 (C2 darker green) (Figure 57). Vulnerability in this

site revealed to be in general quite low, even though erosion was quite severe. This was mainly due to

the low population density observed and moderate landuse type, that brought the CVI to a lower value.
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Site D

Figure 58: Risk classes for Change Rate, site D.

Figure 59: Risk classes for Landuse, site D.

It is possible to observe from figure 58 that site D was completely dominated by erosion, with

a change rate varying between -10 and 0. This site is within a region that is mainly characterized by the

existence of mangroves, belonging to the moderate capital class (Figure 59). Population wise, it was

within the low density class with a population of less than 500 people per square kilometre (Figure 60).
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Figure 60: Risk classes for Population density, site D.

This resulted in an overall vulnerability index of approximately 1.41, quite low when compared

with the maximum value of 4 (Figure 61).

Figure 61: Vulnerability Map, site D.
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Site E

Figure 62: Risk classes for Change Rate, site E.

Figure 63: Risk classes for Landuse, site E.
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In this site, approximately 53.26km of coastline were classified for every parameter.

High accretion was found in approximately 28.7% of the coastline (E1), erosion class in 67.3%

(E2, E4 and E5 )and severe erosion in 4% (E3) (Figure 62).

This site belongs entirely to the moderate capital class in terms of landuse, characterized by

the existence of mainly mangrove forests within 1km of the coast (Figure 63).

Figure 64: Risk classes for Population density, site E.

Regarding population density, it is entirely within the low density class with less than 500 people

per square kilometre (Figure 64). From the data acquired relative to the last 2007 census, it was possible

to observe the existence of a village with approximately 3234 people within 1km of the coast in E4. This

fact is important since it will have implications in the amount of mangroves harvested for wood and

non-wood material, and thus contribute to an increase in the vulnerability of the coast to erosion in this

specific region. Further discussion on this point was performed on the discussion section of this thesis.
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Figure 65: Vulnerability Map, site E.

Computation of the CVI produced the vulnerability map presented in figure 65. In this figure,

E1 comprehends the entire part coloured with a darker tone of green, E3 to the lighter tone of green,

and the green tone in between the two, to E2, E4 and E5 regions. From this map one can see that

approximately 28.7% of the coastline had a vulnerability index of 0.82 (E1), 67.3% a vulnerability of 1.41

(E2, E4 and E5) and 4% 1.63 of vulnerability (E3).

In general, except for site A and B that recorded the highest vulnerability values, in all other

sites there was an overall vulnerability bellow 2. Even when a few sites experienced severe erosion or

high erosion rates, this vulnerability remained bellow 2. This can be explained by the combination of

population density and landuse rankings (generally 1 or 2), which brought the value of CVI to a lower

value.
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6 Discussion

From the results obtained, SVMs classification method seems to be a good approach for delin-

eating the coastline. For this method, kappa coefficient and overall accuracy revealed to be quite high

which translated in a good accuracy of the results obtained. However, it has to be taken into account

that the amount of pixels used for the classification is very important since it influences these values.

Kappa coefficient and overall accuracy were calculated for the number of pixels used. As such, for this

study these values seem to be quite good and this technique very robust. This conclusion was not just

based on these values but on visual confirmation of the extracted coastline accuracy.

Accuracy of the delineation was possible to be tested during validation of the results. Errors

regarding coastline delineation were, as much as possible, kept to a minimum. That is why, during

validation of coastline delineation by the two methods, MNDWI derived coastlines were immediately

discarded since they were not delineating the coastline with as much accuracy as SVMs derived ones.

This conclusion was reached after careful validation of the results, where one could see that MNDWI

derived coastlines were considering in certain regions a considerable amount of intertidal zone as land

class, which resulted in overestimation of erosion areas and further results obtained. However, there

was also the case of 1989 coastline derived from SVMs being badly delineated in some parts of the

coastline. In order to decrease the error in erosion and/or accretion estimation and CVI calculation,

areas where this was confirmed to happen were not used. In fact, as mentioned in the results section,

this bad delineation of the coastline was only observed in the 1989 derived one, since coastline validation

of the rest of the images proved to be quite accurate. It is important to understand that this consideration

of intertidal zone in some areas was much worse in MNDWI derived coastlines and instead of just one

of them, this happened in almost every coastline extracted. However, for the sites identified where

coastline changes were more significant, for every year, coastlines seemed to be very well delimited,

except for part of site C, where the problem previously identified was found, carefully described in the

results, and in the end discarded to be used in overall change area calculation. All this validation and

careful analysis of the results was done in every phase of this thesis in order to decrease the amount of

error associated with the estimations and computations performed.

Even though MNDWI derived images were discarded due to not robust coastline delineation,

in this study, it does not mean that this index is not suitable to delimit the land/water boundary in other

applications. It only means that in this case, and for this region, it was not as suitable and accurate in

performing this classification as the SVMs method.

Regarding georeferencing errors, validation and constant visual analysis of the results, to make

sure that all images were in accordance with one another and coastlines well delineated, was performed.

Interpretation of the images and results obtained led to the conclusion that errors derived from georef-

erencing are minimal or barely non-existent, possibly less than one pixel (30m), according with visual

confirmation. Validation was performed every time the images utilized were processed, such as with
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computation of indices or resizing, in order to make sure that the images were still in accordance with

each other, in regards to georeferencing, and that no warping had occurred. All these checks and cross

checks of data were performed to decrease as much as possible the error associated with coastline

delineation and ensure that accurate results would be obtained.

Taking into consideration tide level for coastline delineation, at the time the images studied

were taken, it was concluded that high tide was occurring. Tide heights obtained from SHOM were for

the region of Beira Port, and they were generalized for the rest of the study area. The central region of

Mozambique channel is regarded in the literature for registering tides that can reach and even go over

the 6 meters (Palalane et al., 2015; Theron et al., 2012; Moreira, 2005). These findings proved similar

to the values obtained via SHOM for the region under study. However, it was concluded that even with

height differences of approximately 1 meter from one year to the next (Table 4), these differences would

be considered negligible in the delimitation of the coastline and they would not have much influence or

overestimate erosion areas obtained. Moreover, the images studied here, were already chosen taking

into account this fact in order to decrease or eliminate the error that tide heights could have represented

for coastline delimitation.

Regarding change detection analysis, the trends observed were expected. Where recession

of the coast related to land movement occurs, it was not surprising that for every year the coastline

moves further landward. Where accretion occurs, with no sand movement involved, it was expected

that this increase was due to mangrove establishment instead of an increase in land area. In some

cases, there seems to be an alternating movement of coastline landward in one year and the following

year, seaward, possibly related to sand dynamics, as it was validated through visualization with Google

EarthTM images and EMI index, as well with the Landsat source images. No unexpected alternating

recession and accretion related with land movement, besides sand, between the years, was found here.

Accretion was either due to simple sediment accumulation or mangrove establishment. Losses in land

area, were due to a loss in sand, bare soil, in site B, or disappearance or destruction of mangroves.

Areas that were not classified with erosion and accretion polygons inside of each site, pertains to the

fact that extracted coastlines maintained approximately the same position over the period of study and

no relevant changes where detected.

In an overall perspective, site C was where overall changed area recorded was higher, with (-)

9.81ha/km. Site D closely followed with an overall changed area of (-) 8.78ha/km. The remaining sites

registered overall changes much lower than in site C and D. These high values for the two sites probably

mean that the process to which they are subject to, are much stronger and erosion inducing than for the

remaining sites. Accretion area revealed to be higher in site E. Phenomena involved in these changes,

of course, depends on the characteristics of each site, and this is why it becomes important to look at

each one of them, individually, in order to understand the dynamics and processes involved that may

have led to these losses and/or increases in area and to explain the CVI values obtained.

Site A2 (Figure 22) observed sand accumulation was also referred by Theron et al. (2012), for

71



the period between 1991 and 2004. However, the period of study in this thesis was longer and that is

why the area of accumulated sand was higher than the one in the study performed. Increase in sand

area in A2 might be due to sediments brought by the highly dynamic river delta observed in the images

(Figures 21-24), that ended accumulating in this region (Theron et al., 2012). A1 and A3 however,

experienced erosion processes. As observed in the images, retreat and increase in area, was due to

sand movement.

Regarding CVI values obtained for this site, one can see that vulnerability varies considerably.

Vulnerability was relatively high in A1a (3.46) and A1b (3) and moderate in A1c (1.73). A1c moderate

vulnerability was specially due to the population density parameter changing from very high density to

high density and landuse, from high to low capital (Figure 49). Vulnerability was very low in A2 and

A3, with 0.82 and 1 respectively, due to accretion experienced and low capital and population density

observed.

Site B corresponds mostly to the city of Beira. In figure 26, the trend observed in B2 of in-

creased recession is also observed by Theron et al. (2012), between the years of 1991 ad 2004. In-

crease in sand in B3 can be attributed to the construction of groins and seawalls over the past years

as an attempt to decrease erosion in this region (Palalane et al., 2015). These constructions were also

clearly observed during validation using high resolution satellite images from Google EarthTM.

However, the field of groins which were built from Malcuti, (North of Ponta Gea) to updrift of

Ponta Gea headland on the south coast (covering an extension of nearly 7 km), have increased erosion

down drift of the last groin, located along Praia Nova coast. This can also help further explain erosion

observed in Praia Nova (B2). It has also been reported that in the most extreme cases, intensified

erosion, in this region, led to infrastructures collapse, with loss of private and public properties (Palalane

et al., 2015).

A new project to upgrade and reinforce the protection of Beira coast, aiming to reduce its

vulnerability to climate change, started to be implemented in December 2012. The construction of a

new groin 80 meters long built in Ponta Gea, may have contributed to the great increase in sediment

verified from 2007 and 2015 in B3 (Figure 26). In the most erosive area of Praia nova, a 350 meter long

groin was also built in the wake of the project mentioned which may have contributed to a decrease of

coastline recession verified from 2007 to 2015, when compared with previous years. A new seawall was

also built in 2013, which may have also contributed to this fact (Figure 66) (Palalane et al., 2015).

Erosion in B1 might be mainly due to continuous action of river water flow velocity causing

erosion of the surface, since this region is characterized by bare soil.

Population and landuse highly contribute to the great vulnerability experienced in this site, with

maximum vulnerability of 4, being experienced in some of the regions within this site, namely in Praia

Nova.
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Figure 66: Construction of a new Seawall in February 2013, Praia Nova. Acquired from Palalane et al.
(2015).

This region, although considered in terms of landuse, for being greatly urbanized, it also char-

acterized by the existence of mangroves, specially in Praia Nova (Palalane et al., 2015; Chevallier,

2013). High cyclone vulnerability can also contribute to explain the great amount of erosion area lost

in this region. In fact, as mentioned before, the destructive cyclone that hit Ponta Gea and Praia Nova

in 2010 has also led to great destruction of mangroves, leading to further increase of eroded area. Not

only cyclone vulnerability has contributed to the decrease of mangroves in the this region but destruction

and overexploitation of this resource have further increased pressure in the coast and led to intensified

erosion hazards (Palalane et al., 2015). With the increasing trend of people moving to these coastal

cities and their outskirts, mangrove forests will probably continue to decrease since their wood is highly

used for construction purposes and very important for the economy of the country and specially in Beira

city. This decrease contributes even further to the vulnerability of the coast, specially to erosion inducing

factors.

Mean erosion rate along Beira city, considering only site B, was observed to be of 1.2m/year,

which was approximately in agreement with the value reported by Maansson (2011) of 1m/year for Beira,

although conditions and exact location of this estimations are unknown. Considering site A and B, mean

value was around 1.02 m/year, and so, still in agreement.

High population density in this area allied to landuse and change rate experienced, have con-

tributed to the high vulnerability values obtained for this site. A vulnerability of 4 was a combination of the

high risk associated to the three parameters used for the calculation. Very high population density can

be pointed as the most contributing factor for such high vulnerability in this region. Low capital landuse

contributed to a moderate vulnerability value, of 1.73, even though population and erosion risks were
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quite high.

Site C was characterized for being very contrasting in terms of erosion, with the highest ero-

sion rate observed in C3b location (Figure 54). Moreover, low population density and moderate capital

landuse, dominated mainly by the existence of mangrove forests also characterized this site. Erosion

observed in this region was mostly due to destruction and overexploitation of mangroves. This is a seri-

ous problem since destruction of mangroves intensifies coastal vulnerability to tide currents and it also

decreases a barrier against flooding and cyclones. This explanation is not only applied to this specific

site but to all sites studied here.

However, vulnerability in this site was quite low (Figure 57). This was precisely due to the low

population density and moderate capital landuse which decreased the vulnerability even though erosion

in this region is quite serious. C2 experienced the lowest vulnerability values since this represents in

fact an accretion area. Once again, this gain in area is expected to be due to mangrove establishment.

No explanation was found for the fact that in this particular area, it seems to be occurring mangrove

establishment, while in the rest of the region destruction was occurring. However, it can be inferred that

C2 is probably not so affected by processes related to tide currents, from the Mozambique channel,

and in that specific region, sediments transported by the river might become accumulated allowing

mangroves to establish and develop. However, this is purely an interpretation of the facts known in order

to come up with a reasonable explanation for this fact, but no actual references were found to back it up.

In site D, only erosion was observed. CVI computation resulted in an overall value of 1.41,

relatively low when compared with the maximum value of 4 (Figure 61). This low value was due to low

population found, with much less than 500 people per square kilometre. However, this region being

characterized by mainly the existence of Mangroves, erosion in this area was probably mainly related

with its destruction and disappearance. This disappearance is of great importance since it will intensify

even further pressure over these areas and increase erosion hazard. River processes, such as water

flow velocity, may have also contributed to their destruction. However, overexploitation is probably a

much credible reason (Chevallier, 2013; Hoguane, 2007). It is important to take note, once again, that

previous authors refer to these processes occurring in the entire region of the Sofala Bank and not to

this specific site.

In site E, accretion area was quite high (E1), while erosion was more severe in E3, with a

change rate of less than -10m/year, which pertains to the severe erosion class (Figure 62). Area gained

was most likely due to mangrove establishment since this region is characterized, in terms of land use,

by the existence of mangroves within 1km landward from the coast. The reason why only in this region

there seems to be an increase in mangroves could be because it was not so exposed to the erosive

action of wave and tide currents, when compared with E2 to E5, which allowed their development.

This could indeed be the reason since in site C, where accretion in C2 was also thought to be due to

mangrove establishment, was also not directly exposed to sea currents and tides, being actually in a river

bank. Not suffering direct exposure to these processes may be what allowed mangroves to establish
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and grow in these regions. Another reason could have been their plantation. However, only reforestation

of this areas (C2 and E1) is not very plausible because these regions have not experienced previous

destruction of mangroves, at least for the period of study considered.

Lost area was also probably due to mangrove destruction. This region has barely no population

at all, however, overexploitation can still occur contributing to its disappearance. In fact, about 1km

landward from E4, there is a village with 3234 people. Need for wood and non-wood products that

mangroves provide might be the cause for overexploitation of this resource in this site and so, increased

erosion area. Sea water currents erosive action may also have contributed to this. Even though barely no

population is threatened with erosion occurring here, it is still alarming the rate at which this mangroves

are disappearing and with it the protection of the coast against wave erosive action and natural occurring

disasters, such as cyclones.

Site E presented overall low vulnerability specially due to very low population density and mod-

erate capital landuse. This was why, even though E3 experiences severe erosion, its vulnerability index

was only 1.63, quite low when compared with the maximum of 4. E2, E4 and E5 experience vulnerabili-

ties of 1.41 (Figure 65).

All sites studied here, were very influenced by tide currents processes, which might have also

contributed to the increased erosion observed (Moreira, 2005). Tidal amplitudes that can exceed the

6 meters, observed in Beira, also contributed to increasing effects of erosion along the coast (Palalane

et al., 2015; Hoguane, 2007).

Sediment transport from the Zambezi river, north of the region of study, also affects coastline

dynamics specially in areas of sand (Palalane et al., 2015). However, and as mentioned by several

authors, since the construction of the Cahora-Bassa dam (1974) and the Kariba dam (1969), there was

a reduction of water volumes from this river, and with it the amount of sediments transported. These

authors believe in the existence of a link between the construction of these dams and increased erosion

in the region between the Zambezi and Save river, which includes the entire area of study (Davies et al.,

2001; NAPA, 2007; UNEP/Nairobi, 2009).

In the Sofala Bank the destruction of overall mangrove forest has been observed to be mainly

due to overexploitation, which can explain, and as mentioned for some of the cases, why a lot of man-

grove area seems to be disappearing (Chevallier, 2013; Hoguane, 2007). Even though Mozambique is

one of the regions in Africa where mangrove forests are more abundant, the rate of their disappearance

along Sofala Bay has been increasing, accounting to 4.9% per year (Sitoe et al., 2014). With increasing

urbanization, demand of wood for construction and other basic necessities, like energy and heating,

will also increase and with it the area of mangrove forests destroyed, since this type of wood has been

extensively used in this region for these purposes (Hoguane, 2007).

It is also important to mention that if some other parameters like sea level rise or cyclone

predictions over the area of study had been implemented, for certain vulnerability computation would
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have delivered higher values.

Change detection maps obtained, give a clearer view of the actual erosion and/or accretion

occurring along the Mozambican coast and approximate values of changed area in hectares associated

with these phenomena.

Vulnerability values obtained for these sites, under the data utilized for this study, are consid-

ered to be a representation of present and future values, if nothing is done to change it. Taking this into

consideration, the vulnerability maps can be used for better understanding of the current vulnerability

the coast is subject to. Hopefully, they can be a source for further and more detailed maps developed in

the future that will allow better planning and management of the coastal zone.

As a last note, other sites could have been chosen to perform change detection analysis and

CVI calculation, however, during careful analysis of the coastlines extracted and the differences between

them, these sites were chosen as the ones identified where changes were more relevant. It was also

taken into account to choose sites that experienced different situations, in terms of population density

and/or landuse. Different considerations were made in order not only to visualize the most affected but

also analyse areas where changes were due to various processes and to different situations.
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7 Conclusion

Results from this thesis reveal the serious erosion suffered in Mozambique’s coastline, more

specifically in the area studied here. It was possible to conclude that extensive erosion and coastline

retreat are occurring in this region even though CVI calculation revealed low to moderate vulnerability,

throughout the sites studied, with exception of regions within site B, that obtained maximum vulnerability,

one of them being Praia Nova. These results were entirely dependant on the parameters studied,

since they greatly influence the value computed. If other parameters, like sea level rise and cyclone

vulnerability data, had been used, the values obtained would have certainly been much higher for all the

sites chosen.

In terms of overall change rate, higher values were observed in site C and E (Figures 53 and

61 respectively). However, after computation of the CVI, higher vulnerability values were found in site B,

since this region corresponds mostly to the city of Beira, where pressure from high population density

is intensified. Sites A and B seem to be the ones most conditioned by population density, while sites

C to E, were mainly dominated by mangrove forests, with moderate capital landuse, and very low in

population density. This is why for these regions the CVI obtained was quite low.

Remote sensing and GIS technologies were suitable and useful in the study of spatio-temporal

dynamics of the coast, related to erosion processes. Regarding techniques used for coastal delineation,

it was possible to conclude that SVMs techniques employed here proved to be very accurate in coastline

delineation, even though it has not been one of the most extensively classification techniques used for

coastline extraction in the scientific community. The DSAS tool, also used by many other authors, has

been very helpful for quantifying actual coastline change rate.

Integration of aerial photography with high resolution imagery could improve accuracy of the re-

sults, however, in regards to this study, Landsat derived images revealed to be very useful and adequate

for the scale of the changes that were observed here. For identification of small scale changes Landsat

data might not be the best choice, and images with higher spatial resolution should be employed. How-

ever, in the wake of this study, Landsat data proved to be a very efficient tool to extract the coastlines

and identify coastline changes.

For the future, high resolution satellite images would be a great tool to analyse with further detail

the processes studied here, for which they would probably deliver more detailed results. This study was

performed for a small region but it would be convenient to extend it to the entire Mozambican coast in

order to have a full scale understanding of the coastal changes this country is experiencing. Although

this is the first time such study regarding CVI computation was performed in the area, future studies

should be carried in order to have an even better understanding of the processes that contribute to the

vulnerability of the coast. In this thesis, with the exception of coastline change rate, the other parameters

used were socio economic variables, which have great importance and influence in the processes that

occur along the coast. However, including coastal forcing characteristics such as tidal dynamics and sea
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level rise predictions, could improve the vulnerability characterization of the coast.

Further studies to characterize risk associated with coastal hazards in Mozambique could be

a very useful tool for coastal managers to develop better planning for these regions and mitigate losses

due to phenomena that take place in the coast. With climate change being more and more evident as

time passes by, this will not only add new hazards to the coast but also intensify the current ones and

increase their destructive action. This is why, continuous monitoring of the coast making use of EO and

GIS techniques is revealing to be of extreme importance in order to understand the dimensions and

rates of change experienced by an ever changing coastline.
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